TCP Performance Implications of Network Asymmetry

draft-ietf-pilc-asym-03.txt

Authors:

Hari Balakrishnan Venkata N. Padmanabhan Gorry Fairhurst Mahesh Sooriyabandara

Revisions to the draft

Draft -00 (Sept 99)

Issued in response to WG charter

Draft -01

Added issues and techniques

Minor corrections

Draft -03

Major Revision

Added examples of asymmetric networks

Added techniques

Techniques organised by type

Identify techniques in use

Relationship to PEP clarified

Recommendations added

Bandwidth Asymmetry

Downstream/Forward: Constrained throughput

Upstream/Reverse: Limited ACK rate

Most applications send more than they receive

High asymmetry causes return pipe to fill with ACKs

Asymmetry

Examples of Asymmetry

Asked WG for examples

- Please do send more!

Links which benefit from a lower return rate

Shared medium access High per packet "cost" for many "radio" links

Asymmetry benefits such links benefit by design

Important note:

These slides use a satellite example

- The same applies for the other subnetworks !!!

Implications

- (i) ACK rate controls TCP send rate (self-clocking) cwnd opens slowly (low ACK rate)
 Cumulative ACKs generate TCP DATA bursts
- (ii) ACK Queue builds

 May drop ACKs
 Increasing RTT, TCP RTO may expire before loss
 Slowed reaction time of protocol, (FR etc)

Types of Mitigations

(a) End-to-End (various)

End-to-End Mitigations

Modified Delayed ACKs

REC: Don't use (difficult to select d)

Large MSS

REC: Don't use IP fragmentation

Dynamically vary d

REC: Don't use - remain a research area

Other TCP Sender Modifications

REC: Don't use

Transparent Mitigations (type 0)

Header Compression

Reduces size of ACK

RFC1144 (V-J HC)

REC: Widely implemented and used

May use if low error rate, ordered delivery Benefit with low-to-moderate asymmetry

Robust Header Compression (See ROHC WG)

REC: Benefit with low-to-moderate asymmetry

Benefit with low-to-moderate asymmetry Does not reduce ACK rate Does not mitigate with upstream DATA

Transparent Mitigations (type 1)

Techniques applied before the upstream bottleneck

ACK Filtering / Suppression

REC: Major benefit, has been deployed

May lead to TCP bursts

ACK Decimation

REC: Major benefit, has been deployed

May lead to TCP bursts Some inelegant recovery

Transparent Mitigations (type 2)

Techniques applied after the upstream bottleneck Mitigates the effect of *stretch ACKs* (TCP DATA bursts)

ACK Reconstruction (implicit)

REC: Desirable

Appropriate algorithms remain a research issue

ACK Compacting / Companding (explicit)

REC: Desirable

Appropriate algorithms remain a research issue

Are security recommendations (packet amplifier) enough?

Shared Reverse (uplink)

Sharing reduces capacity per flow for uplink ACKs

- (i) ACKs from multiple flows
- (iii) DATA sharing with ACKs

Prone to ACK Compression

Often a KEY FACTOR

Transparent Mitigations (type 3)

Reverse link scheduling Mitigate effect of sharing

Per-Flow queues

REC: Widely implemented

Desirable for all low speed links

ACKs First Scheduling

Separate queues for DATA and ACKs (hi priority)
Used with a scheme to reduce ACK rate

REC: Promising

Appropriate algorithms remain a research issue

Conclusions

Major revision (-03) completed

Thanks to ALL who provided new input

Intention to correct known mistakes (-04) April

More Comments VERY Welcome:

Taxonomy correct?
More example networks?
More mitigations?

RECOMMENDATIONS CORRECT?